Exercice 1:

 \overrightarrow{AB} et \overrightarrow{AC} sont deux vecteurs. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans les conditions suivantes :

1.
$$AB = 3$$
, $AC = 5$ et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{6} + 2k\pi$

2.
$$AB = 1$$
, $AC = 4$ et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{8\pi}{3} + 2k\pi$

3.
$$AB = 4$$
, $AC = 7$ et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{4} + 2k\pi$

4.
$$AB = 2$$
, $AC = 2$ et $(\overrightarrow{AB}, \overrightarrow{AC}) = -\frac{5\pi}{3} + 2k\pi$

5.
$$AB = 7$$
, $AC = 10$ et $(\overrightarrow{AB}, \overrightarrow{AC}) = -\frac{7\pi}{4} + 2k\pi$

Exercice 2:

Calculer $\overrightarrow{AC} \cdot \overrightarrow{AB}$, $\overrightarrow{CA} \cdot \overrightarrow{BA}$ et $\overrightarrow{BA} \cdot \overrightarrow{AC}$ sachant que :

1.
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -3$$

2.
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 3$$

Exercice 3:

1. Sachant que
$$\overrightarrow{v} \cdot \overrightarrow{u} = -\frac{1}{2}$$
 et $\overrightarrow{w} \cdot \overrightarrow{u} = \frac{3}{4}$, déterminer $\overrightarrow{u} \cdot \overrightarrow{v}$ et $\overrightarrow{u} \cdot \overrightarrow{w}$;

2. Sachant que
$$\|\overrightarrow{u}\| = 3$$
, déterminer \overrightarrow{u}^2 , $-7\overrightarrow{u} \cdot \left(\frac{1}{3}\overrightarrow{v}\right)$

- 3. Sachant que \overrightarrow{u} et \overrightarrow{v} sont colinéaires de même sens et de normes respectives 3 et 2. Calculer $\overrightarrow{u} \cdot \overrightarrow{v}$, $\overrightarrow{u} \cdot (-\overrightarrow{v})$ et $-2\overrightarrow{u} \cdot \frac{5}{2}\overrightarrow{v}$
- 4. Sachant que $\overrightarrow{u} \perp \overrightarrow{v}$ cacluler $3\overrightarrow{u} \cdot (5\overrightarrow{v})$.

Exercice 4:

MNPQ est un losange de entre O telq ue MP=8 et NQ=6. Calculer les produits scalaires :

1.
$$\overrightarrow{MO} \cdot \overrightarrow{MN}$$

$$\overrightarrow{PQ} \cdot \overrightarrow{NQ}$$
 $\overrightarrow{PM} \cdot \overrightarrow{NP}$

$$\overrightarrow{PM} \cdot \overrightarrow{NP}$$

2.
$$\overrightarrow{MQ} \cdot \overrightarrow{NP}$$

$$\overrightarrow{MN} \cdot \overrightarrow{PQ}$$
 $\overrightarrow{OM} \cdot \overrightarrow{NM}$

$$\overrightarrow{OM} \cdot \overrightarrow{NN}$$

Exercice 5:

Soit ABCD un carré et I un point de [AB]. On note H le projeté orthogonal de A sur [ID]. En évaluant de deux manières différentes $\overrightarrow{IA} \cdot \overrightarrow{ID}$, démontrer que $\overrightarrow{IA} \cdot \overrightarrow{ID} = AI^2$

Exercice 6:

Le triangle ABC est équilatéral de côté 1. Soit H le projeté orthogonal de A sur (AB). Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{AB} \cdot \overrightarrow{AH}$ en utilisant les projections orthogonales.