EXERCICE 2 5 points

Exercice de spécialité

Le plan est muni d'un repère orthonormal direct $\left(\mathbf{O},\ \overrightarrow{u},\ \overrightarrow{v}\right)$ (unité graphique : 4 cm). Soit Ω le point d'affixe 2.

On appelle r la rotation de centre Ω et d'angle $\frac{\pi}{4}$ et h l'homothétie de centre Ω et de rapport $\frac{\sqrt{2}}{2}$.

- **1.** On pose $\sigma = h \circ r$.
 - **a.** Quelle est la nature de la transformation σ ? Préciser ses éléments caractéristiques.
 - **b.** Montrer que l'écriture complexe de σ est : $z \mapsto \frac{1+i}{2}z+1-i$.
 - **c.** Soit M un point quelconque du plan d'affixe z. On désigne par M' son image par σ et on note z' l'affixe de M'. Montrer que $z z' = \mathrm{i}(2 z')$.

2. a. Question de cours

• Prérequis : définitions géométriques du module d'un nombre complexe et d'un argument d'un nombre complexe non nul. Propriétés algébriques des modules et des arguments.

Démontrer que : si A est un point donné d'affixe a, alors l'image du point P d'affixe p par la rotation de centre A et d'angle $\frac{\pi}{2}$ est le point Q d'affixe q telle que $q - a = \mathrm{i}(p - a)$.

- **b.** Déduire des questions précédentes la nature du triangle $\Omega MM'$, pour M distinct de Ω .
- **3.** Soit A_0 le point d'affixe 2 + i.

On considère la suite (A_n) de points du plan définis par :

pour tout entier naturel n, $A_{n+1} = \sigma(A_n)$.

a. Montrer que, pour tout entier naturel n, l'affixe a_n de A_n est donnée par :

$$a_n = \left(\frac{\sqrt{2}}{2}\right)^n e^{i\frac{(n+2)\pi}{4}} + 2.$$

- **b.** Déterminer l'affixe de A_5 .
- **4.** Déterminer le plus petit entier n_0 tel que l'on ait : pour $n \ge n_0$, le point A_n est dans le disque de centre Ω et de rayon 0,01.