ം Concours Fesic mai 2006 രം

Calculatrice interdite; traiter 12 exercices sur les 16 en 2 h 30; répondre par Vrai ou Faux sans justification.

+1 si bonne réponse, -1 si mauvaise réponse, 0 si pas de réponse, bonus d'un point pour un exercice entièrement juste.

EXERCICE 1

Le plan complexe est rapporté à un repère orthonormal $(0, \vec{u}, \vec{v})$.

Soit la fonction f qui, à tout point M d'affixe z, z différent de 1, associe le point M' d'affixe z' telle que

$$z' = \frac{2z+1}{z-1}.$$

- 1. f possède deux points invariants conjugués.
- **2.** L'ensemble des points M d'affixes z tels que $z' \in \mathbb{R}$ est l'axe des abscisses.
- **3.** L'ensemble des points M d'affixes z tels que z' = 2 est un cercle.
- **4.** À tout point M' du plan d'affixe z', on peut associer un point M d'affixe z tel que f(M) = M' sauf au point M' d'affixe z' = 2.

EXERCICE 2

Le plan complexe est rapporté à un repère orthonormal $(0, \vec{u}, \vec{v})$.

On considère les complexes z_1 de module 2 et d'argument $\frac{\pi}{3}$, $z_2 = \overline{z_1}$ et $z_3 = 1 + i$.

1.
$$\left| \frac{z_3^8 \times z_1^9}{z_2^{11}} \right| = 4.$$

2.
$$\frac{z_1^4 \times z_2^7}{z_2^6}$$
 est un nombre réel.

3.
$$(z_1 - z_3)^4 = 28 - 16\sqrt{3}$$
.

4. L'ensemble des points M d'affixe z telles que $\arg(z) = \arg(z_3)$ est la droite d'équation y = x.

EXERCICE 3

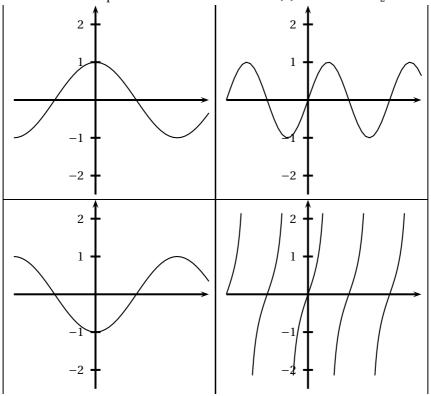
Le plan complexe est rapporté à un repère orthonormal $(0, \overrightarrow{u}, \overrightarrow{v})$.

On considère le point A d'affixe $a = 5 - i\sqrt{3}$. On appelle :

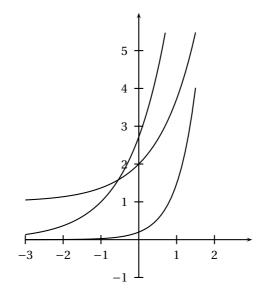
- B le point d'affixe b, image de A par la rotation de centre O et d'angle $\frac{\pi}{3}$.
- C le point d'affixe *c*, milieu de [OA],
- D le point d'affixe d donnée par $d-c=\frac{1}{2}(b-a)$,
- E le point d'intersection des droites (AD) et (BC).
- 1. Le point B a pour affixe $b = 3\sqrt{3} + i$.
- 2. D est le milieu de [OB].
- **3.** E est le barycentre de {(B, 1); (C, 2)}.
- 4. La droite (OE) est perpendiculaire à (AB).

EXERCICE 4

1. La courbe représentant la fonction $x \mapsto \sin(x)$ est la courbe \mathcal{C}_2 .



2. On considère les trois courbes ci-dessous : la courbe représentant la fonction $x \longmapsto e^{x+1}$ est \mathscr{C}_1 .

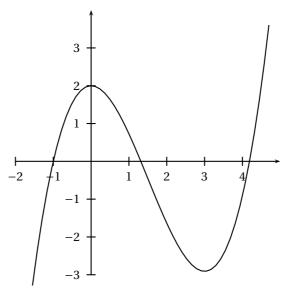


3. On considère la fonction f représentée par la courbe $\mathscr C$ ci-dessous et la fonction F définie sur [0;4] par

$$F(x) = \int_0^x f(t) \, \mathrm{d}t.$$

F est croissante sur [0; 4].

4. On considère les mêmes fonctions f et F qu'au \mathbf{c} . La fonction F est deux fois dérivable sur [0; 4] et vérifie F''(0) = 0.



EXERCICE 5

- **1.** Soient f, g et h trois fonctions définies sur \mathbb{R} . On suppose que, quel que soit $x \in \mathbb{R}$, on a : $f(x) \leqslant g(x) \leqslant h(x)$, que $\lim_{x \to +\infty} f(x) = 3$ et que $\lim_{x \to +\infty} h(x) = 5$. Alors g(x) admet une limite quand x tend vers $+\infty$ et cette limite est comprise entre 3 et 5.
- **2.** Soit f la fonction définie par $f(x) = e^{-\frac{1}{x}}$ pour $x \neq 0$ et f(0) = 0. On appelle (\mathscr{C}) sa courbe représentative dans un repère du plan. (\mathscr{C}) possède une asymptote d'équation x = 0 et $\lim_{\substack{x \to +\infty \\ x > 0}} f(x) = 0$.
- **3.** La fonction F définie par $F(x) = \frac{x^2}{2} \ln x \frac{x}{2}$ est une primitive de la fonction f définie par $f(x) = x \ln x$ sur \mathbb{R}_+^* .
- 4. Soient f la fonction définie par f(x) = 2 ln x et (%) sa courbe représentative dans un repère du plan.
 (%) possède au point d'abscisse -1 une tangente d'équation y = -2x-2.

EXERCICE 6

1. Soit u la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \int_1^n \mathrm{e}^{-t^2} \, \mathrm{d}t$. On veut prouver que la suite u est convergente. On considère pour cela le raisonnement suivant :

« Je choisis m=0 et M=1. Soient $n\in\mathbb{N}^*$ et $t\in[1\ ; n]$, on a $t^2\geqslant t$, donc $0\leqslant \mathrm{e}^{-t^2}\leqslant \mathrm{e}^{-t}$. Il s'ensuit que $0\leqslant u_n\leqslant \int_1^n \mathrm{e}^{-t}\,\mathrm{d}t$, soit $0\leqslant u_n\leqslant \left[-\mathrm{e}^{-t}\right]_1^n$, soit enfin $0\leqslant u_n\leqslant \mathrm{e}^{-1}-\mathrm{e}^{-n}\leqslant 1$. Ceci étant vrai pour tout $n\in\mathbb{N}^*$, la suite apparaît bornée par m=0 et M=1.

Soit de plus $n \in \mathbb{N}^*$. La fonction $t \mapsto e^{-t^2}$ est continue et positive sur [1 ; n]. u_n représente donc l'aire de la portion de plan comprise entre les droites d'équations x = 1, x = n, y = 0 et la courbe représentant cette fonction. Cette aire

augmente quand n augmente, ce qui se traduit par le fait que la suite u est croissante.

Conclusion : u est croissante et majorée par 1 donc la suite u est convergente.».

Ce raisonnement est exact.

2. Soit f la fonction définie sur $[0; \ln 2]$ par : $f(x) = (2x-1)e^x$. On appelle (\mathscr{C}) la courbe représentative de f dans un repère du plan. On cherche à calculer l'aire de la portion de plan limitée par les droites d'équation $x = 0, x = \ln 2, y = 0$ et la courbe (\mathscr{C}).

On considère pour cela le raisonnement suivant (et le renseignement ln 2 ≈ 0,7):

« La fonction F définie par $F(x) = (2x-3)e^x$ est une primitive de f sur $[0; \ln 2]$. F est en effet dérivable sur [0; ln2] et $F'(x) = 2e^x + (2x-3)e^x = (2x-1)e^x$.

On a :
$$\int_0^{\ln 2} f(x) dx = \left[(2x - 3)e^x \right]_0^{\ln 2} = (2\ln 2 - 3) \times 2 - (-3) = 4\ln 2 - 3 \approx -0, 2.$$
 Comme le résultat est négatif, c'est que l'aire cherchée est la valeur absolue de

ce résultat, soit 0,2 unité d'aire ».

Ce raisonnement est exact.

- **3.** Soit *f* la fonction définie sur par $f(x) = (1+x)^{10}$. On cherche une approximation de f(0,001). On considère pour cela le raisonnement suivant :
 - « f est définie et dérivable sur \mathbb{R} . Pour x réel, $f'(x) = 10(1+x)^9$ et la courbe représentant f possède une tangente au point d'abscisse 0 d'équation y =xf'(0) + f(0), soit y = 10x + 1. On en déduit que $f(0,001) \approx 10 \times 0,001 + 1$, soit $f(0,001) \approx 1,01.$ »

Ce raisonnement est exact.

4. Soit D l'ensemble des valeurs réelles x telles que $\sin x \neq 0$. Soit f la fonction définie sur D par : $f(x) = \frac{\cos x}{\sin x}$. On veut prouver que f est décroissante sur D. On considère pour cela le raisonnement suivant :

« f est une fraction dont le numérateur et le dénominateur sont dérivables sur D et dont le dénominateur ne s'annule pas sur D. On en déduit que f est dérivable sur D.

Pour $x \in D$, on a $f'(x) = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$. Pour tout $x \in D$, on a f'(x) < 0. Comme le signe de la dérivée donne le sens de variation de la fonction, c'est

que f est strictement décroissante sur D. »

Ce raisonnement est exact.

EXERCICE 7

Soit (E) l'équation différentielle : $y' + 2y = e^{-x} \sin x$. Soit f la fonction définie par $f(x) = -\frac{1}{2}(\cos x - \sin x)$.

- 1. f est dérivable sur \mathbb{R} et, pour $x \in \mathbb{R}$, $f'(x) = \sin x \cos x$. 2. Pour $n \in \mathbb{N}$, $\int_{n\pi}^{(n+1)\pi} f'(x) dx = \frac{1}{2} e^{-n\pi} \left(e^{-\pi} + 1 \right)$.
- **3.** *f* est l'unique solution de l'équation (E) qui s'annule en 0.
- 4. Si g est une solution de (E), la courbe représentant g possède une tangente au point d'abscisse 0 dont une équation est donnée par y = (1 - 2x)g(0).

EXERCICE 8

Le plan est muni d'un repère orthonormal $(0, \vec{u}, \vec{v})$.

Soit f la fonction définie par $f(x) = \ln\left(\frac{3x+2}{5x}\right)$. On appelle D_f l'ensemble de définition de f.

- 1. $D_f = \mathbb{R}_+^*$.
- **2.** Soit g une fonction définie et dérivable sur $D_g = \mathbb{R} \left\{0; \frac{-2}{3}\right\}$ telle que quel que soit $x \in D_g$, $g'(x) = \frac{3}{3x+2} \frac{1}{x}$. f et g sont égales à une constante additive près.
- $3. \lim_{x \to 1} \frac{f(x)}{x 1} = -\frac{2}{5}.$
- **4.** $\lim_{\substack{x \to 0 \\ x > 0}} x f(x) = 0.$

EXERCICE 9

Soient $\lambda \in \mathbb{R}_+^*$ et les fonctions f_1 et f_2 définies sur \mathbb{R} par $f_1(x) = \mathrm{e}^{3x}$, $f_2(x) = -\lambda^2 \mathrm{e}^x + 2\lambda \mathrm{e}^{2x}$. On appelle \mathscr{C}_1 et \mathscr{C}_2 leurs courbes représentatives dans un repère du plan.

- **1.** \mathscr{C}_1 et \mathscr{C}_2 se coupent au point $A(\ln \lambda; 3\lambda)$.
- **2.** Quel que soit $\lambda \in \mathbb{R}_+^*$, \mathscr{C}_1 est au-dessus de \mathscr{C}_2 .
- **3.** Il existe un point B en lequel \mathscr{C}_1 et \mathscr{C}_2 possèdent la même tangente.
- **4.** Lorsque λ est supérieur à 1, l'aire de la portion du plan comprise entre les courbes \mathscr{C}_1 et \mathscr{C}_2 et limitée par les droites d'équation x=0 et $x=\ln \lambda$ est, en unités d'aire, $\frac{(\lambda-1)^3}{3}$.

EXERCICE 10

On considère une suite ν strictement croissante dont tous les termes appartiennent à l'intervalle $[0; \pi]$.

On définit les suites c et s pour $n \in \mathbb{N}$ par $c_n = \cos(v_n)$ et $s_n = \sin(v_n)$.

- **1.** La suite ν converge vers π .
- **2.** La suite *c* est croissante.
- **3.** La suite *s* est périodique.
- **4.** Les suites c et s sont adjacentes si et seulement si la suite v converge vers $\frac{\pi}{4}$.

EXERCICE 11

Le plan complexe est rapporté à un repère orthonormal $(0, \overrightarrow{u}, \overrightarrow{v})$.

On considère la suite (z_n) définie pour $n \in \mathbb{N}$ par $z_n = \mathrm{e}^{\mathrm{i}\frac{2n\pi}{3}}$ et on appelle A_n le point d'affixe z_n .

- **1.** Quel que soit $n \in \mathbb{N}$, A_n appartient au cercle de centre O et de rayon 1.
- **2.** Quel que soit $n \in \mathbb{N}$, $|z_{n+1} z_n| = |z_1 1|$.
- **3.** La suite (z_n) est périodique de période 5.
- **4.** $\sum_{k=0}^{4} = z_0 + z_1 + \dots + z_4 = 0.$

EXERCICE 12

On considère la suite u définie pour $n \in \mathbb{N}^*$ par : $u_1 = 1$ et $u_{n+1} = \left(\frac{1}{n} + \frac{1}{n^2}\right)u_n$.

5

- 1. Pour $n \in \mathbb{N}^*$, on a $u_n = \frac{n}{(n-1)!}$
- **2.** La suite *u* est croissante.

- **3.** Quelque soit $n \in \mathbb{N}^*$, si on a $n \ge 2$, alors on aura : $0 \le u_n \le 2 \times \left(\frac{3}{4}\right)^{n-2}$.
- **4.** La suite *u* est convergente et de limite nulle.

EXERCICE 13

On considère un espace probabilisé fini (Ω, p) dans lequel un évènement A a les trois possibilités A_1 , A_2 , et A_3 deux à deux distinctes de se produire et un évènement B a les deux possibilités B_1 et B_2 distinctes de se produire. Le tableau suivant donne en pourcentages la probabilité de certains évènements de se produire par rapport à l'univers Ω .

	A_1	A_2	A_3	Total / A
B_1		20		
B_2	30			
Total / B			10	100

On donne aussi les renseignements suivants : $p(A_2) = 60 \%$ et $p_{B_1}(A_3) = \frac{1}{6}$.

- 1. A_1 et B_1 sont incompatibles.
- 2. La probabilité d'obtenir B₁ est 24 %.
- **3.** Si A₃ est réalisé, la probabilité d'obtenir A₃ et B₁ est 4 %.
- **4.** La probabilité d'obtenir A₃ et B₁ est 4 %.

EXERCICE 14

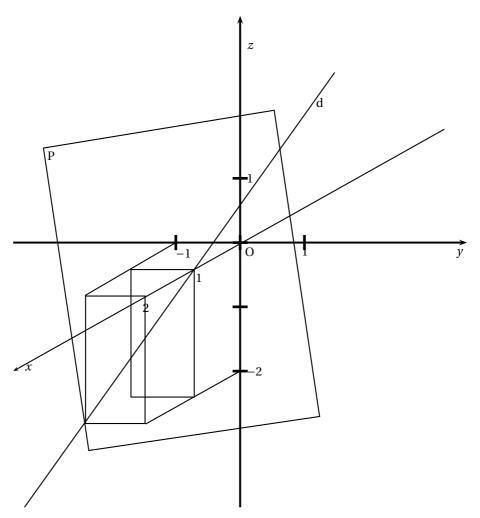
Une rampe lumineuse est constituée d'ampoules bleues, rouges ou jaunes provenant de deux usines U_1 et U_2 . U_1 produit 60 % de ces ampoules. La durée de vie en années de chacune de ces ampoules suit une loi exponentielle dont les paramètres sont les suivants :

	Ampoules bleues	Ampoules rouges	Ampoules jaunes
Ampoules de U ₁	$\lambda_{B_1} = 0.25$	$\lambda_{R_1} = 0,20$	$\lambda_{J_1}=0,15$
Ampoules de U ₂	$\lambda_{\rm B_2} = 0,20$	$\lambda_{R_2} = 0,15$	$\lambda_{\rm J_2}=0,10$

- 1. La probabilité qu'une ampoule rouge dure moins de 5 ans sachant qu'elle vient de U_1 est $0.6(1-e^{-1})$.
- **2.** La probabilité qu'une ampoule rouge dure moins de 5 ans est $1-0.6e^{-1.25}-0.4e^{-1}$.
- **3.** La probabilité qu'une ampoule jaune dure entre 5 et 10 ans est $0.6(e^{-0.75} e^{-1.5}) + 0.4(e^{-0.5} e^{-1})$.
- **4.** La demi-vie en années d'une ampoule jaune de U₂ est 4 ln 2.

EXERCICE 15

Le schéma ci-dessous représente une situation de l'espace dans un repère approprié dont le centre est un point O. On sait que la droite d est orthogonale au plan P. On appelle A le point de coordonnées (2; -1; -2). P



1. Le plan P a pour équation cartésienne x - y - 2z - 1 = 0.

2. La droite d a pour équations paramétriques : $\begin{cases} x = -2t \\ y = 1+2t , t \in \mathbb{R} \\ z = 2+4t \end{cases}$

3. La demi-droite [OA) a pour équations paramétriques : $\begin{cases} x = 2 + 2t \\ y = -1 - t \\ z = -2 - 2t \end{cases}$

4. La sphère de centre O et de rayon $\frac{1}{2}$ est cachée par P.

EXERCICE 16

L'espace est muni d'un repère orthonormal $(O, \vec{i}, \vec{j}, \vec{k})$.

Pour $\theta \in \mathbb{R}$, on désigne par P et Q les plans d'équations respectives P : $\begin{cases} y - x &= \sin^2 \theta \\ z & \in \mathbb{R} \end{cases}$,

$$Q: \left\{ \begin{array}{lcl} z - y & = & \cos^2 \theta \\ x & \in & \mathbb{R} \end{array} \right.$$

On appelle Δ la droite d'intersection de ces deux plans.

1. Pour tout $\theta \in \mathbb{R}$, les plans P et Q sont orthogonaux.

2. Pour tout $\theta \in \mathbb{R}$, la droite Δ est contenue dans le plan d'équation $\begin{cases} z-x = 1 \\ y \in \mathbb{R} \end{cases}$

3. Pour tout $\theta \in \mathbb{R}$, la droite Δ est orthogonale au plan d'équation x + y + z = 0.

4. Il existe un réel θ tel que Δ soit parallèle au plan $(O, \vec{\iota}, \vec{j})$.