EXERCICE 2 6 points

Commun à tous les candidats

1. Démontrer que pour tout n de \mathbb{N}^* et tout x de [0; 1]:

$$\frac{1}{n} - \frac{x}{n^2} \leqslant \frac{1}{x+n} \leqslant \frac{1}{n}.$$

- **2.** a. Calculer $\int_0^1 \frac{1}{x+n} dx$.
 - **b.** Déduire en utilisant 1., que :

pour
$$n \in \mathbb{N}^*$$
 $\frac{1}{n} - \frac{1}{2n^2} \leqslant \ln\left(\frac{n+1}{n}\right)$ (1)

puis que
$$\ln\left(\frac{n+1}{n}\right) \leqslant \frac{1}{n}$$
.

3. On appelle *U* la suite définie pour $n \in \mathbb{N}^*$ par :

$$U(n) = \sum_{k=1}^{k=n} \frac{1}{k} - \ln(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n).$$

Démontrer que U est décroissante (on pourra utiliser **2. b.**.)

4. On désigne par V la suite de terme général :

$$V(n) = \sum_{k=1}^{k=n} \frac{1}{k} - \ln(n+1) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1).$$

Démontrer que V est croissante.

5. Démontrer que U et V convergent vers une limite commune notée γ . Déterminer une valeur approchée de γ à 10^{-2} près par la méthode de votre choix.