✓ Exercice **0**

Étudier la monotonie des suites suivantes (en calculant $u_{n+1} - u_n$ ou $\frac{u_{n+1}}{u_n}$) avec n > 0.

a)
$$u_n = n - n^2$$

b)
$$u_n = \frac{-7 \times 3^{2n}}{18^n}$$

✓ Exercice 2

La suite suivante est arithmétique. Calculer la raison, le premier terme u_0 puis calculer u_{30} : $u_5 = 3$ et $u_{15} = -27$

✓ Exercice 3

La suite $(u_n)_{n\in IN}$ suivante est géométriques . Calculer la raison , le premier terme u_1 et u_{20} : $u_{10}=8$ et $u_7=-1$

✓ Exercice **4**

Calculer les sommes suivantes (en réfléchissant s'il s'agit de suites arithmétiques ou géométriques)

a)
$$S_1 = 18 + 54 + 162 + \dots + 39366$$

b)
$$S_2 = -5 + 2 + 9 + \dots + 65$$

✓ Exercice **⑤**

Le prix d'un composant électronique est de 150€ au moment de son apparition sur le marché (année $0: P_0 = 150$). On demande à un expert d'étudier plusieurs schémas d'évolution de prix de ce produit. On désigne par P_n le prix du produit au bout de n années.

- 1.) <u>Premier scénario</u> : Le prix de ce composant augmente modérément et on suppose que P_n vérifie : $P_n = 15n + 150$.
 - a) Calculer P₀, P₁, et P₂
 - b) Cette suite est-elle arithmétique ou géométrique ? Si oui, préciser la raison.
 - c) Quel sera le prix au bout de 10 ans ?
- 2.) Deuxième scénario: Le prix de ce composant subit une augmentation de 10% par an.
 - a) Calculer P₁, P₂, et P₃
 - b) Exprimer P_{n+1} en fonction de P_n , en déduire que (P_n) est une suite géométrique dont on précisera la raison.
 - c) Exprimer P_n en fonction de n.
 - d) Quel sera le prix au bout de 10 ans ?