EXERCICE 1 (5 points)

Commun à tous les candidats

Partie A

Soit f la fonction définie sur l'intervalle]1; $+\infty$ [par $f(x) = \frac{x}{\ln x}$.

- 1) a) Déterminer les limites de la fonction f en 1 et en $+\infty$.
 - **b)** Étudier les variations de la fonction f.
- 2) Soit (u_n) la suite définie par $u_0 = 5$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n.
 - a) On a tracé la courbe représentative \mathscr{C} de la fonction f sur la figure donnée en annexe qui sera rendue avec la copie. Construire la droite d'équation y = x et les points M_1 et M_2 de la courbe \mathscr{C} d'abscisses respectives u_1 et u_2 . Proposer une conjecture sur le comportement de la suite (u_n) .
 - b) Démontrer que pour tout entier naturel n, on a $u_n \ge e$ (on pourra utiliser la question 1b)).
 - c) Démontrer que la suite (u_n) converge vers un réel ℓ de l'intervalle [e; $+\infty$ [.

Partie B

On rappelle que la fonction f est continue sur l'intervalle $]1; +\infty[$.

- 1) En étudiant de deux manières la limite de la suite $(f(u_n))$, démontrer que $f(\ell) = \ell$.
- 2) En déduire la valeur de ℓ .

ANNEXE

À compléter et à rendre avec la copie.

Figure de l'exercice 1

