:

EXERCICE 4 (5 points)

Le plan complexe est muni d'un repère orthonormal direct (O; \vec{u} , \vec{v}).

On considère l'application f qui à tout point M d'affixe z non nulle associe le point

M' =
$$f(M)$$
 d'affixe z' tel que : z' = $\frac{z}{|z|}(2-|z|)$.

Le cercle C_1 , de centre O et de rayon 1, est représenté sur la figure, donnée en annexe page 6, que l'on complétera au fur et à mesure des questions.

Pour z complexe non nul, on note $z = re^{i\alpha}$, r étant le module de z et α un argument de z.

- 1. Montrer que $z'=(2-r)e^{i\alpha}$.
- 2. Déterminer l'affixe a' du point A', image par f du point A d'affixe a = 3.
- 3. Soit B le point d'affixe $b = -\sqrt{3} + i$.
 - a) Écrire b sous forme exponentielle.
 - b) Déterminer l'affixe b' du point B', image du point B par f.
- 4. Placer A, B, A' et B' sur la figure.
- 5. a) Déterminer l'ensemble E des points M du plan privé du point O dont l'image par f est O.
 - b) Représenter E sur la figure.
- 6. Montrer que le cercle C_1 est l'ensemble des points M du plan distincts de O tels que f(M) = M.
- 7. Pour cette question, M est un point du plan, distinct de O, n'appartenant pas au cercle C_1 .

 On appelle I le milieu du segment [MM'] où M'est l'image de M par f.
 - a) Montrer que I appartient à C_1 .
 - b) Montrer que I appartient à la demi-droite [OM).
 - c) Sur la figure donnée en annexe est placé un point nommé M_1 .

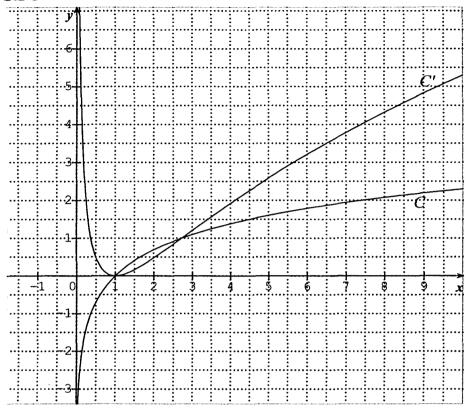
Construire le point M_1 , image par f du point M_1 .

Page 5/6

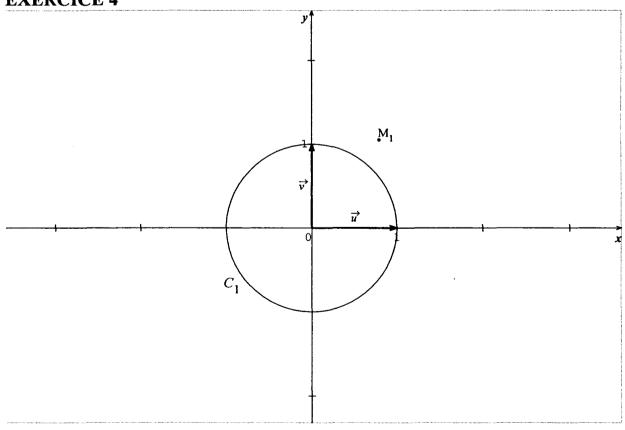
ANNEXE

Cette page sera complétée et remise avec la copie à la fin de l'épreuve.

EXERCICE 3



EXERCICE 4



Page 6/6